
J .  Fluid Mech. (1966), vol. 26, part 2, pp .  377-400 

Printed in Great Britain. 
377 

The constraints imposed on tornado-like vortices by 
the top and bottom boundary conditions 
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A laboratory model of a tornado vortex has been produced, incorporating two 
features which are believed to be important to the understanding of the atmo- 
spheric phenomenon, but which have been largely ignored in previous studies. 
First, it has been shown that a vortex can be driven from above by a mechanism 
analogous to convection in a cloud, and that density differences within the funnel 
itself are not essential. Associated with this mechanism of formation is a circula- 
tion in the vertical, with an upflow in the centre surrounded by a compensating 
annular downflow. Secondly, the bottom boundary is seen to have a strong 
influence on the vortex, since the down and up flows are linked there by a rapid 
radial inflow in a thin boundary layer. 

In  the present paper an approximate theoretical description of such a vortex 
is proposed. The interior and boundary layer flows are first examined separately, 
and then a condition is sought which makes the two solutions consistent. The 
starting-point of the theory is the assumption of a form of stream function 
which describes a circulation in the vertical having the essential features of that 
observed. The result of the matching procedure is to fix both the form of the 
tangential velocity profile, and the relative magnitudes of the three components 
of velocity. These deductions are not critically dependent on the assumed form 
of the motion in the vertical, and are in good agreement with the first measure- 
ments in the laboratory vortices, though the quantitative experimental results 
are not emphasized here. 

1. Introduction 
I n  view of the longstanding interest in tornadoes, surprisingly little is known 

about their detailed characteristics, either from observation or theory. There is, 
for example, no general agreement about even the direction of vertical motion 
in the funnel. Much of the difficulty of observation can probably be attributed 
to the fact that tornado vortices are usually made visible by markers which 
are not good indicators of air motions: the descending edge of the cloud funnel 
outlines a pressure surface rather than indicating downward air motions, and 
trajectories of heavy debris do not trace particle paths either. Theories too are 
divided, on the question of the relative importance of driving by buoyancy 
within the funnel, or by a pressure gradient imposed from above. 

t Present address : Department of Applied Mathematics and Theoretical Physics, 
Silver St., Cambridge. 
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Associated with the theoretical approaches to the problem have been many 
laboratory investigations, in some of which extremely realistic-looking vortices 
have been produced. The ease with which such phenomena can be exhibited, 
however, has probably actually retarded development in the field. As Fultz 
(1951) pointed out in his review of the subject, these ‘experiments lead only to 
conclusions that result also from elementary theory and go back to the seven- 
teenth and eighteenth century beginnings of the discussion’. They all provide 
some means of producing angular momentum and of concentrating this by an in- 
flow towards the centre of rotation, but few investigators have attempted any 
quantitative measurements, or have even compared the nature of the boundary 
conditions imposed on their flows with those appropriate for tornadoes. There 
therefore still seems to be a great need for quantitative studies of experimental 
vortices. The useful models will not necessarily be those which resemble the atmo- 
spheric case in every respect; but more attention should be paid to comparisons 
between the experiments and nature to discover if the laboratory results are 
relevant at all. 

In  a previous paper (Turner & Lilly 1963), we took a first step in this direction, 
and suggested a new method of producing tornado-like vortices in the laboratory. 
These are driven by a mechanism which we believe is closely analogous to con- 
vection in the atmosphere. A stream of gas bubbles released at  the centre of the 
top of a rotating tank causes an upflow and consequently a circulation in the 
vertical, and the radial inflow associated with this concentrates the pre-existing 
angular momentum in a central core. The bubbles driving the motion may either 
be released by nucleation of carbonated water, or injected directly through 
a fine tube. We suggested two advantages that this method might have over 
the common one of withdrawing fluid from the container (as described, for ex- 
ample, by Long 1958). First, a steady state can be obtained without the need to 
return fluid to the container a t  an arbitrarily chosen radius, usually the outer 
rim, and secondly, the vertical motion near the region of convection is free to 
adjust itself to the vortex motion which it produces, a condition which must be 
satisfied in the atmosphere. 

In  the case where bubbles are injected into the tank from a compressed air 
line, the flow can be kept steady indefinitely, and the various velocity profiles 
measured by photographing the motion of small marker particles. Much can be 
deduced about the flow in advance of detailed quantitative measurements, 
however, by observing the behaviour of dye. The first important observation 
is that a vortex can be driven over the whole depth of $he tank by the region of 
convection at the top. The motion in the centre is upwards, and surrounding this 
region of upflow is an annulus in which there is a downflow (see plate 1, figure 1) .  
After a long time, dye injected into the flow fills the whole of a central cylindrical 
region and does not appear outside it (plate 2, figure 2), showing that the radial 
and vertical velocities fall off rapidly with radial distance. The increased angular 
velocities are also confined to  this region. 

The relevance of this picture of the cylindrical confinement of a vortex driven 
from above has received support recently from some observations of water- 
spouts made by Thorarinsson & Vonnegut (1964) in unusual circumstances. 
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They photographed a series of spouts formed under the smoke plume rising from 
an active volcano near Iceland. Outside the condensation funnels there is often 
visible a much wider cylinder filled with ash which has clearly been pulled down 
from above. We suggest that this might be more generally the case, but that only 
rarely is there a suitable tracer of air motion such as the fine ash present on this 
occasion. 

Further deductions can be made about our laboratory flow by following the 
motion of dye in more detail. Dye injected a t  the top of the tank moves down- 
wards with its tip at  nearly constant radius through the whole depth (plate 1, 
figure l), but the velocity decreases from top to bottom. The vertical velocity 
does not appear to decrease towards zero at the bottom however. As the dye 
approaches the bottom, it suddenly reappears closer to the centre and moves 
upwards, indicating that a rapid inward radial transport is taking place in a 
thin boundary layer (see figure 6). The vertical velocity profile must be such that 
the central upward and the annular downward transports are exactly equal a t  
any height, and the radial flow in the boundary layer must be closely matched to 
the vertical flow. In  this experiment the flow both into and out of the boundary 
layer is smooth and non-turbulent. 

It is clear from these observations that the boundaries at both the top and 
bottom of the vortex can have a profound influence on the flow. It is the aim of 
this paper to examine the theory of such flows with the boundary conditions 
on the axis particularly in mind, and to show that a relation between the vertical 
and circulating motions must exist, as a consequence of the constraints imposed 
by the lower boundary. Certain special problems of this kind have recently 
been solved numerically by those interested in vortex tubes. Workers in that 
field have very clearly recognized the importance of boundary-layer effects, 
and we shall later use some of the results of their investigations. Many of these 
have unfortunately only appeared in laboratory reports with limited circulation, 
but a convenient summary of this work is to be found in a report of a recent 
symposium on concentrated vortex motions in fluids (Kiichemann 1965). 

The main arguments of the present work can be outlined very simply. Starting 
with a stream function which is suggested by, and has all the essential properties 
of, the laboratory vortex described above, the tangential velocity profile can 
be calculated in two ways. First, a set of ‘interior solutions’ is obtained from the 
form of the radial inflow, using the equations appropriate to strong vortices in 
a region away from solid boundaries. This is essentially the method which has 
been used in the past for the sink vortex, and it leads to a set of profiles corre- 
sponding to different strengths of the inflow. The same form of stream function 
also implies a certain distribution of the inward flux in the boundary layer, as a 
function of radius. Since this flux is produced by an unbalanced pressure gradient 
associated with the tangential motion, a second set of tangential profiles can be 
deduced for various strengths of the axial flow. The requirement that the 
profiles found in these two ways should have the same position and magnitude 
of the velocity maximum fixes not only the form of the tangential profile, but 
also the magnitude of all the velocities. 
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2. Vortices with strong circulation 
First, let us consider the steady axisymmetric flow of a viscous incompressible 

fluid in a region remote from solid boundaries. The most relevant work on this 
subject is that of Lewellen (1962). He has developed a series expansion method 
for studying such flows when the circulation is strong, which justifies earlier 
approximate calculations and shows how their accuracy can be assessed and 
higher order terms found. A summary of his results will now be given, in a form 
which will be applicable to our case. 

A stream function $ for the vertical motion is introduced, such that 

By eliminating the pressure, the equations of motion and continuity for axi- 
%ymmetric motion can be reduced to two, in the dependent variables 9 and 
I? = wr, the circulation. A further simplification is obtained by using dimension- 
less variables, defined for the present purpose in the form 

where r,, I ,  s2 and u, are appropriate scales of horizontal and vertical length, 
angular velocity and radial velocity, the meaning of which. will be made more 
explicit later. The resulting regrouping shows that the flow is in general governed 
by three parameters 

N - U O r O  the radial Reynolds number, 
V 

2 the square of the ratio of characteristic a,= @) 
lengths, (3) 

2 the square of the ratio of typical vertical 
and tangential velocities. 

and 

Lewellen first examined the special case, considered earlier by Rott (1958) 
and by Donaldson & Sullivan (1960), for which 

r = r(?1)7 $ = EAT)- (4) 

He showed that this form results in the elimination of both a, and E ,  and that 
solutions of this type cannot satisfy axial boundary conditions in which there 
is a radial variation of the axial pressure gradient. They cannot therefore be 
exact solutions either for the sink flow or the ‘tornado ’ type we are considering 
here. Lewellen’s major contribution was his description of a method which can in 
principle take into account any variation of this axial pressure gradient. By 
making a series expansion of r and $ in the parameter 8 (which is small in many 
flows of interest, including our laboratory experiment and tornadoes in the 
atmosphere), he showed that the zeroth-order equations are 

or 
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and 

The most general form of $, consistent with (6) is 

$0 = foo(7) + t;fO1(7), 

2717; - ~f,, r; = 0, and therefore 

where primes denote differentiation with respect to 7. 
To this order of approximation then the radial and tangential velocities are 

independent of height and the vertical velocity at any radius changes linearly 
with height. So far, no boundary conditions have been specified, but the functions 
foo andf,, must be chosen with these in mind. Anyf,,, or distribution of inflow 
velocity, which is consistent with the boundary conditions may be specified, 
and then ro found by integrating (8). This result is the justification of the method 
used, for example, by Einstein & Li (1951) in their calculation of tangential 
velocity profiles in the sink vortex. They assumed in effect a certain distribution 
of inflow, and then calculated the circulation profile for various values of N .  
The systematic procedure devised by Lewellen allows one to calculate also the 
higher-order correction terms, and assess the accuracy of the zeroth-order 
approximation. 

Reference should also be made to Lewellen’s discussion of two other well- 
known theoretical studies of vortices which have had the tornado in mind, but 
which differ in important respects from the present approach. Long (1958, 
1961) found similarity solutions valid in a core boundary layer near the axis. 
These imply, however, that the axial and tangential velocities are of the same 
order everywhere, and they are therefore not appropriate when 8 is small. 
Gutman (1957), on the other hand, found similarity solutions for a special case 
of a vortex driven along its length by buoyancy produced by the release of latent 
heat. Such effects might certainly be relevant sometimes in the atmosphere, 
but in the following we will be guided by the laboratory experiment and consider 
a fluid of constant density on which a vertical motion is imposed from above. 

3. The application of the strong circulation equation to our laboratory 
vortices 

Lewellen applied his method to the case of flow in avortex tube, with tangential 
injection and axial withdrawal of fluid. In  order to do this, he again had to 
assume a special form of stream function which seemed appropriate to the flow 
through the hole. Experimentally, however, the situation was much more 
complex, since the end walls of the chamber imposed different boundary con- 
ditions on the flow to the ones assumed, and led to a ‘secondary flow’ which in 
fact closely resembles the vertical circulation observed in our experiments. 
More recently, this boundary-layer interaction problem has been studied in 
greater detail by Rosenzweig, Lewellen & Ross (1964), and by Rott & Lewellen 
(1965). 

The lack of agreement between Lewellen’s original calculation and the observa- 
tions does not imply any weakness in his method, however. It just means that 
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the stream function chosen did not represent all the required features of the flow. 
If a stream function more appropriate to the vertical circulation actually 
observed can be written down, then the procedure can again be used to find the 
corresponding tangential velocity profile. The experimental conditions for our 
convectively driven vortex seem more clear-cut than they are in the usual vortex 
tube arrangements, and we will regard what we observe as the primary flow. 
In  this section we discuss more appropriate forms of stream function to describe 
this vertical motion and then apply Lewellen's method to calculate the tangential 
profiles. 

c 

Dimensionless radius r/ro 
1 *o 2 0  

FIG~RE 3. The forms of the vertical (w) and radial (u) velocity profiles given by equations 
(10) in the text. The profiles calculated from (11) are very similar, except that u falls to 
zero at rir,, = p-+, 

The simplest form of non-dimensional stream function which, (a) satisfies the 
condition (7) imposed by strong circulation or small E, ( b )  represents an upflow 
at r = 0 and a surrounding downflow, and (c) becomes small at large radii, 
is 

The corresponding vertical and radial velocities are 

$ = -qe-v( l  +c) .  (9) 

(10) 
I 

TO 
w = 2uo--(1-q)e-v(1+[), u = -uoq*e-?. 

These forms are drawn as a function of r/ro = q* in figure 3. Explicit meanings 
can now be given to ro and uo: ro is the radius at which the vertical velocity 
vanishes, and uo is e times the radial velocity at that radius. The first calculations 
were made using these functions, but it later seemed slightly preferable to 
generalize (9) to a form which allows $ to become zero at a finite radius, namely, 

$ = - y ( l  -,3q)e-"?(l +E) .  (11) 

The parameter ,3 is determined by the radius of zero $, and 01 may be related to 
it if we again take the position of zero w as our horizontal length scale r,,. In  this 
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case a: = ( 1  - 2,8)/( 1 - ,8) and ( 1  1 )  is a family of profiles specified by the single 
parameter ,8. 

Notice that in taking the forms (9) and ( 1  1 )  we have gone beyond what is 
implied by the assumption of strong circulation alone. We have also put 

foo = f 0 1 =  -v(l-PT)e-aq, ( 1 2 )  

which is not required by (7). It implies that the vertical velocity profiles are 
similar at all heights, and that the radial mass flux in the bottom boundary 
layer has the same functional form as the flux per unit height in the interior. With 
this assumption the definition of the vertical length scale does not depend on 
radius; 1 is the depth over which the total radial inflow equals that in the boundary 
layer, or equivalently, the height at which the stream function doubles from its 

0.5 1.0 1.5 2.0 
Dimensionless radius (rir,,) 

FIGURE 4. ‘Interior’ profiles of tangential velocity, calculated using equation (13) 
with ,I3 = 1, a = 8 and a series of values of N .  

value a t  the outer edge of the bottom boundary layer. It is not strictly necessary 
a t  this point to assume this relation betweenf,, andf,,, but a connexion between 
them is needed when the boundary-layer matching procedure is carried out later. 
Near the axis 7 = 0, the assumption foo = fol --f 7 is certainly required by the 
boundary conditions. The assumed forms are also in accord with what we 
observe, and in particular with the cylindrical form of the region of upward 
motion and the fact that the zero of vertical velocity is a t  the same radius every- 
where. How accurately ( 1 2 )  can be satisfied a t  larger radii will be discussed 
again in a later section. A detailed theoretical justification of this procedure 
must await a study of the upper boundary condition, which is not considered in 
this paper apart from the vertical velocity distribution it produces. 
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With fol of the form given by (1 1) the equation (8) for Po becomes 

Pi +frN (1 -pq) e-"qI'; = 0. (13) 

If we suppose that the angular velocity scale s2 is just the angular velocity of the 
tank, all the non-dimensional quantities are now fully specified. Equation (13) 
allows us to calculate sets of profiles of ro or w as a function of 7 or r/ro, for dif- 
ferent values of N and p. There are now only two boundary conditions a€ our 
disposal; the most important constraint is clearly I',(O) = 0. For convenience of 
integration the slope at the origin was also specified, but the resulting solutions 
were afterwards scaled to give Po = q at q = 1/p, i.e. so that the tangential velo- 
city reached solid rotation at the radius where the radial velocity is zero. 

4 6 8 10 12 14 16 
Radial Reynolds number N 

FIGURE 5. The position of the maximum tangential velocity for profiles like those in 
figure 4, as a function of N .  Within the range of /3 used (& to &), the curves for different 
/3 are indistinguishable from one another on the scale used here. 

I n  figure 4 are shown the results of integrating (13) numerically for a series of 
values of N with /3 = 4 (and therefore 01 = 3 ) .  Similar results have been obtained 
with other values of /3, corresponding to different ratios of the radii of regions 
of upflow and downflow. The form (11) is preferred to (9) because it suggests 
a definite reason for fixing on an outer radius a t  which to apply the second 
boundary condition on (13). Equation (9) was at first used in much the same 
way, but only by specifying arbitrarily (but with an eye on the experimental 
results) the radius at which solid rotation was approached. The part of these 
profiles at even larger radii is not very useful, since the zeroth-order approxima- 
tion is poor there; more terms are necessary to produce a solution approaching 
a given solid rotation at large radii, which it is not possible for the zeroth-order 
term to do alone.? 

The main features of these tangential profiles, which will be significant later, 
are the strong dependence of both the maximum velocity and the radius at which 
this occurs on N .  (In figure 5, for example, the radial position of the maximum 

t I am indebted to Mr Albert Barcilon for his investigation of this point. 
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has been plotted against N . )  For N = 0, or very large viscosity, the fluid is 
everywhere in solid rotation. As N increases, a maximum in v develops at an 
intermediateradius. Near the axis is aviscous core which isnearlyinsolidrotation, 
and whose angular velocity increases with increasing N .  Similar features are 
of course observed in the solutions of Einstein & Li (1951), who worked with 
different assumed radial velocities. The solution of Rott (1958) also exhibits the 
same kind of viscous core. 

4. The boundary-layer theories 
Various methods of approach to the problem of a rotating fluid over a solid 

boundary have been developed. Von Kkmbn (1921) first considered the related 
problem of the flow in a stationary fluid due to a rotating disk. Bodewadt (1940) 
solved numerically the equations for the flow produced over an infinite stationary 
plane in a fluid which is rotating with uniform angular velocity at infinite dis- 
tance from the plane. Batchelor (1951) discussed qualitatively the general class of 
flows of which these two are the limiting examples. More recently Rogers & Lance 1 

(1960) have studied numerically similarity solutions for the case where the plane 
and the fluid are rotating with arbitrary angular velocities. A number of workers, 
notably Mack (1962) and Rott & Lewellen (1964), have used a momentum 
integral approach, and have applied their methods to special types of non- 
uniform outer flow. Most of these theories have an application to vortex tubes in 
mind, but Lewellen (in an unpublished thesis, and in the report just quoted) 
has commented on the possible importance of boundary interaction effects 
for the tornado vortex. 

Though the momentum integral methods offer the best hope for a full quanti- 
tative solution of the problem, the work which seems most readily applicable in 
the present context is that of Rogers & Lance (1960). We will first summarize 
their results, and then suggest a plausible extension of them to the case of non- 
uniform rotation of the outer flow. The results obtained in this way are consistent 
with what is observed in our model, but their quantitative use does involve 
an extra assumption which is not investigated in detail here. 

When the outer flow is rotating with angular velocity w, greater than that 
of the boundary !2, Rogers & Lance introduce non-dimensional variables defined 

The radial and transverse velocity profiles P and G have been calculated as 
functions of 6 for various v. These have an oscillatory character, with alternate 
layers of fluid moving inward and outward along the disk. The net volume flux 
per unit circumference is inwards, of magnitude 

Using the profles of P presented by Rogers & Lance for various (T, we can 
proceed a step further than they did, and write down an explicit expression for 

25 Fluid Mech. 26 
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the dependence of M on u. In  the range 0 < u < 1 it  is numerically very closely 
true that 

(16) Jam F(5) d5 = 0-67( 1 - v), 

so that the radial volume flux per unit length is 

M = - 0 * 6 7 ( 1 - ~ ) r ( ~ ~ ) * ,  (17) 

inserting the negative sign appropriate to inward transport. 

5. The extension to a non-uniform outer flow 
All the results of the previous section are strictly for an outer flow in solid 

rotation. We will now make a local similarity assumption, and suppose that 
the inward flux in the boundary layer a t  any radius is related to the local angular 
velocity w by the same expression (17) obtained using the above similarity 
transformations. We can see immediately that (17) has the sort of behaviour 
which is required in our application: the radial flux vanishes a t  the axis and where 
the angular velocity of the interior flow equals that of the bottom, and has a 
naximum in between. These features are characteristic also of solutions obtained 
by the momentum integral method for all cases in which the circulation decreases 
with decreasing radius. Again the assumption is likely to be most accurate near 
the axis, where the tangential flow approaches solid rotation. A non-uniform 
radial flux in the boundary layer of course implies a non-uniform vertical velocity 
a t  large distances above the boundary, and the type of behaviour suggested 
by our laboratory experiment is sketched in figure 6. Note that the results of 
Rogers & Lance will be used here in the opposite way to that commonly employed 
in studies of boundary layers under rotating flows: that is, the vertical velocity 
profile will be assumed given, and the corresponding tangential profiles deduced. 

Continuity of mass implies that the vertical velocity at  the edge of the bottom 
boundary layer is related to the change of radial flux in the boundary layer by 

1 a(rM) w(r ,  0) = -- -~ 
r ar 

Comparing with (1) we see that 
$c=o = rM,  

if $ is zero a t  r = 0. Inserting now the form (7) appropriate to strong circulation 
and using (17) gives 

(20) uo-fo0 = - 0 . 6 7 ( 1 - ~ ) ? j ( ~ ~ ) * .  
E 
r0 

With the special form (1 1) for foo (20) becomes 

C(1 -By) e-ag = (1 - u) u-*, (21) 

(22) 
L 

where 

or, expressing this parameter in terms of E ,  a, and N defined in (3), 

C = 1.50 (Qv)-)u, -; 
TO 

C = 1.5ON*a;%d. ( 2 W  
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Equation (21) can be solved explicitly for r~ as a function of 7 to give the angular 
velocity profile in the interior corresponding to a given form of vertical motion. 
A family of solutions is obtained for various values of the parameter C, whose 
magnitude is proportional to the ratio of characteristic vertical and boundary- 
layer velocities. Some of these solutions, for the profiles with p = &, are shown in 
figure 7. Notice that the magnitude of the maximum velocity is sensitive to C, 
but the radius at which this occurs changes much less than it does for the 'interior ' 
profiles of figure 4. In fact for the form of vertical velocity used here, this position 
moves slowly inward to the limit r/ro = 0-5 (whatever the value of p) as C or 
the central angular velocity becomes large. The behaviour of the maximum is 
shown in figure 8 for several values of p. 

I 
I 

c 
Top of boundary layer 

t t i +  
................................. .................................. " ...... " ......-... 

Radial flow 
*c---+ - Solid bottom boundary 

/ / / / / 1 / / / / / / 1 1 / / 1 1 /  1 1 / 1 1  1 / 1 / 1 1  . . . . . . . . . . . . . . . . . . . . .  
0 2.0 

Radial velocity / in boundary layer 

FIGURE 6. A sketch of the bottom boundary layer, illustrating how the radial inflow 
in this layer must be related to the vertical flow outside it. 

It is worth noting a t  this point that there is an upper limit to the value of C 
for which tangential profiles obtained in this way could be realized physically. 
The steep region of negative slope near r = r,, implies that the angular momentum 
is increasing slowly with increasing radius. As a certain value of C is exceeded, 
this rate of increase becomes zero at some radius, and then negative. Such 
profiles would be unstable to small disturbances, so that already the lower 
boundary has apparently imposed a limit on the magnitude of tangential velocity 
which can co-exist with the form of vertical motion chosen. For the 'matched' 
profiles described in the next section, this occurs first with C = 4.4 when 
p = 0.234, and the corresponding maximum tangential velocity is 3.9 Qr,. 

25-2 
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This result is not in fact very helpful, since it probably only exhibits the increas- 
ing inadequacy of our assumptions, about the form of vertical profile and local 
similarity, at larger radii. The vertical motion in a steady vortex driven by con- 
vection must always adjust itself in such a way that the angular momentum 
does increase outwards. 

0 0 5  1.0 1.5 2.0 
Dimensionless radius @/yo) 

FIGURE 7. Profiles of tangential velocity, calculated using a local similarity assumption 
to relate radial flow in the boundary layer to the local angular velocity. These are solu- 
tions of equation (21), with ,!I = a, a = 8 and various values of C. 

3 4 5 6 
G 

FIGURE 8. The position of the maximum tangential velocity for profiles like those in 
figure 7, as a function of G .  The curves are displaced slightly for different p, but all tend 
to TIT,, = 0.5 for large C. 



Constraints imposed on tornado-like vortices 389 

6. Comparison of the interior and boundary-layer solutions 
We now come to the most important step of the argument: the demonstration 

that the possible range of conditions, for which the ‘interior’ and ‘boundary- 
layer ’ solutions of §$3 and 5 are valid simultaneously, is small. It will be shown 
that this requirement fixes the values of both N and C within certain limits. 

For each assumed form of the stream function in the vertical (corresponding 
to a given /?, or a given ratio of the radii of the upflow and the downflow) two 
sets of tangential profiles have been obtained, as shown in figures 4 and 7. It 
is now necessary to pick out a pair, one from each set, which are as similar as 
possible in shape. These should have at least the same position and magnitude 
of the velocity maximum, and if possible have the same slope at the origin. 
(The choice of the vertical stream function has already ensured that they reach 
solid rotation at the same radius.) In  figures 9 and 10 are plotted the magnitude 
of the velocity maximum and the angular velocity at  the origin against the 
position of the maximum for the two sets of solutions, for /? = $ and /? = 4. 
As remarked earlier, the position of the maximum for the interior solutions is 
much more sensitive to changes in parameters than it is for the boundary-layer 
solutions. The curves for the two cases therefore cross, and this permits the 
determination of a unique set of parameters corresponding to  each form of 
motion in the vertical. It happens that both the velocity maxima and the angu- 
lar velocity at the origin match with very nearly the same position of the maxi- 
mum. 

With /? = $ the values obtained are (r/ro)max = 0.62; B,,, = 3.6r0Q; w, = 11Q. 
From the previous figures 5 and 8 we see that the profiles picked out in this way 
fix the magnitudes of N and C too, and we find N = 8.2, C2 = 18 (C = 4-2). 
The corresponding values with /? = 6 and /? = + and therefore wider regions of 
downflow are shown in table 1. Notice that the position of the maximum and the 
value of N are rather insensitive to /? (or the position of the outer edge of the 
annular downflow), whereas C, the magnitude of the maximum, and especially 
the magnitude of the cent,ral angular velocity, are much more dependent on ,8. 
This small variation of N and (r/ro)max is of course a direct consequence of the 
small variations of (r/ro)max in the ‘boundary-layer’ curves on figures 9 and 10, 
and it remains true if we relax the conditionf,, = fol and compare the boundary 
layer and interior curves for different /?. 

The ‘matched’ pairs of profiles for /? = $ and /? = 8 are shown in figure 11. 
They are indistinguishable on this scale from the origin to the maximum, but the 
fit becomes worse at larger radii, especially for small values of /?. The ‘boundary- 
layer’ solution, though it is poor in an intermediate range, preserves the correct 
asymptotic behaviour at large radii, whereas the ‘interior’ profiles go very 
wrong there. This reflects the fact that higher order terms in the E expansion are 
small at small 7, but must become large in order to produce a solution approach- 
ing a given solid rotation. It seems likely too that the exact form of the assumed 
stream function becomes more important in this region, and that the assumption 
foo = fol can no longer be made if consistency between the two methods of calcu- 
lating the tangential motion is to be obtained. 
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P (+o) at max %**/To Q W T k O P  N C 
t 0.62 3.6 11 8.2 4.2 

0.59 4.6 15 8.9 4.9 + 0.57 5-8 19 9-6 5.5 

TABLE 1. The properties of the theoretical tangential velocity profiles obtained 
by comparing the interior and boundary-layer solutions 
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FIGURE 11. Matched pairs of tangential velocity profiles for two values of P. ‘Interior’ 
profiles (full lines) and ‘boundary-layer ’ profiles (broken lines) have been chosen to have 
the same position and magnitude of the maximum, using figure 9. They also have the same 
angular velocity along the axis. 

Let us now return to (22a), and examine what is implied by fixing the para- 
meters N and C according to the matching condition. This imposes a relation 

(23) 
between a,, and e of the form 

B = baa, 

where b is a numerical factor of order unity. (Its value is b = 0.95 when p = 4 
and b = 1.9 when ,8 = 4.) There is thus now only one free parameter in the 
problem, which may be taken as either a, or e. It is clear from (23) that a small 
ratio of horizontal to vertical length scales is sufficient to ensure the small value 
of e which is required to justify the use of the zeroth-order approximation. 

7. Solutions obtained without assuming a form of stream function 
The above matching procedure has led to a satisfactory agreement between 

tangential profiles obtained in two ways, provided the form of the stream func- 
tion for the vertical motion is assumed to be known. We now inquire if it  is 
possible to eliminate the specific assumption about the vertical motion, and 
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determine this too from the boundary-layer matching. This can in fact be done, 
but for reasons which will become apparent, less defkite information is obtained 
in this way than by using the preceding calculation. 

By retaining the assumption foo = fol, but now without using the specific 
form (12), foo can be eliminated from (8) and (20) to give an equation for I?,: 

where To = rig. This can be integrated.numerica1ly from r0 = 0 at 9 = 0 and 
gives a family of solutions whose character depends on the parameter 
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FIQURE 12. Profiles of tangential velocity calculated using the conditionf,, = fol 
but with no explicit assumption about the form of fol. 

a combination of the horizontal and vertical length scales and the boundary- 
layer depth. So far, ro has not been specified and the slope of r0 is arbitrary at  the 
origin. In  order to make the solutions directly comparable with those obtained 
earlier, ro has been defined as the position of zero w, or the maximum of foo(q) 
calculated from (24) and (20). The numerical solutions scaled in this way are 
shown in figure 12 as functions of 74 and the corresponding values of N/2C are 
marked on the curves. (These are irregularly spaced because I?; at ';I = 0 has been 
fixed as an initial value for the integration, and N/2C determined later by scaling 
To and ';I by the same factor in (24).) The stream functions have not been plotted, 
but their form may be deduced from (20). They rise from zero at 7 = 0 to a maxi- 
mum at 7 = 1, and fall to zero a t  r = 1, where the angular velocity of the flow 
is the same as that of the bottom. This occurs a t  nearly the same value of 74 for 
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all the profiles shown. It is clear that the vertical velocity will not be zero at that 
radius, though the radial velocity must be. 

Qualitatively, therefore, these solutions do exhibit the behaviour which is 
necessary to represent the laboratory experiments, an angular velocity which 
decreases rapidly away from the centre, and a central upflow surrounded by an 
annular downflow. They have, however, retained many of the features of the 
‘interior’ profiles found earlier. One has no control over the form of v or off 
at  large radii: both of these functions oscillate with large amplitude, the former 
about v = rQ and the latter aboutf = 0. The position of the first maximum of v 
is sensitive to the value of N/2C and is related to its magnitude in a similar way to 
that already shown in figure 9 for the interior profiles. The magnitude suggests 
an outer fitting point at a smaller radius, which is also consistent with figure 12. 

The usefulness of this procedure is limited by the fact that there is now no 
clear way to choose one of these solutions, or to impose the observed behaviour 
on v or f at large radii. As has already been pointed out, it  is not possible to 
assign a further boundary condition at large radii (and in particular to approach 
solid rotation there) using the zeroth-order approximation alone. The assump- 
tionf,, = fol on which the derivation of (24) is based is also likely to be inadmis- 
sible at larger radii (cf. figure 11). Only by including terms of higher order, or 
by using the full equations for the interior motion, can one expect to obtain 
solutions of the proper form at large radii. It seems possible that this outer 
boundary condition could then pick out a unique solution, as it did in the prob- 
lem considered by Gutman (1957). 

8. Summary of properties obtained by matching 
The arguments developed in this paper have led to many explicit relations 

between measurable flow parameters, as a result fist of the assumption of large 
swirl and then the matching conditions imposed at the bottom boundary. 
These results will be collected together, and in some cases rewritten in a more 
convenient form, before they are compared with the available experiments. 

Fundamental to the whole argument is the assumption that E is small, and 
this should be tested directly from the definition E = (uoZ/Qri)2. An immediate 
consequence of the ‘large swirl’ (small c) condition is the linear variation of w 
with height: this too can be tested, and the values of w(0, c)  along the axis pro- 
vide a measure of Z/ro, by the definition of 1, and of uo, using the relation obtainable 
from (1 1) 

The profile of vertical velocity should be compared with the assumed forms, 
and ro is of course defined as the radius of zero vertical velocity. 

The prediction has been made that N = uoro/v should have a narrow range of 
numerical values near N = 9. The quantities needed can again be obtained from 
the variation of w with height. If a direct measurement of radial velocity, say u1 
at r = ro can also be made, then N might be obtained alternatively using values of 
uo deduced from (1 1). (For example, uo = 2 . 6 0 ~ ~  when ,8 = i.) 

The addition of a known value of angular velocity to the parameters already 
available will now allow the calculation of C, from (22). As shown in table 1, 

w(0,O) = 2u0Z/r0. (25)  
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this can vary more widely than N and is sensitive to the value of p, i.e. to the rela- 
tive radii of the regions of up- and downflow. Closely linked to the changes in C 
are the differences in the predicted tangential profiles which are also set out in 
table 1. A result which remains valid in spite of wide variations in the other 
quantities is that the position of the maximum should lie near r/ro = 0.60. 

Other results which are not tested extensively here, but which may be useful 
in future comparisons with experiment, are relations between the three com- 
ponents of velocity. These depend on the ratio of length scales ro/Z, which is left 
as a free parameter in the problem, provided only that it is small. They may be 
obtained from the data recorded in table 1 and written in the form 

Again the results are not very sensitive to ,8: the factor c1 is 0.22 for ,8 = a, 3;  
and c2 = 0.54 when ,8 = 4, c2 = 0.48 when ,8 = 9. 

9. Preliminary comparison with experiment 
Laboratory experiments were conducted concurrently with the development 

of the ideas set out above. The most important deductions from them have been 
qualitative, and it has been shown how these experiments suggested the method 
of approach used here. Some quantitative results are also available, however, 
and are worth recording, even though they were obtained before the behaviour 
was well understood, and not all the quantities later recognized to be important 
were measured in every case. Enough data are available to show at least that this 
theoretical approach is relevant to these experiments (and in particular to check 
that E is small) and to provide a first test of the conclusions. The experiments 
to be described do not cover a wide range of conditions, partly because a fixed 
geometry was used throughout, but partly for a reason over which we had less 
control. The ability of the driving stream of bubbles to adjust itself to the vortex 
it produces is probably an important factor in achieving a match between the 
vertical and tangential motions, but there is an associated disadvantage: there 
is no convenient external parameter available to use for a comparison between 
experiments. The magnitude of the vertical motion produced by this bubbling 
must be used instead, and this is not related in a simple way to the rate of air 
flow. 

Results are available for two different upper boundary conditions, a free sur- 
face and rigid lid (with a hole in the centre to allow the air to escape). The rigid 
lid made it possible to achieve a completely steady state for very much longer 
than with the free surface, probably because it supplies angular momentum to 
the vortex more effectively and eliminates waves on the surface which eventually 
move the vortex away from the centre. With a rigid lid, on the other hand, the 
oscillations of vertical velocity are large, and waves pass up the centre much as 
they would along a loose helical spring stretched from top to bottom of the tank. 

The basic velocity measurements were made by injecting neutrally buoyant 
fluid particles into the flow, lighting them strongly from the side against a dark 
background and taking time exposures of their tracks, usually with an exposure 
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of 8 see. A photograph showing several of these tracks is shown in plate 3, figure 13, 
and all the desired quantities can be measured from such photographs. The 
position of the particle in the vortex comes from the diameter of the helix (cor- 
rected for refraction) and the vertical and tangential velocities respectively 
from the length and number of turns, and the known time interval. Occasionally, 
particles were photographed during the time their vertical velocity was changing 
sign, and a direct measurement could thus be made of the position where this 
occurred, and the corresponding radial velocity. We shall concentrate on two 

Rate of 
bubbling 

Expt. no. (cc/min) 

B 400 
I 400 
I1 1000 
V 400 
VI 1000 

Rotation 
Upper rate *O 

boundary (rad/sec) (em) 

Free 3n 0.64 
Rigid 3n 0.58 
Rigid 3n 0.64 
Rigid 2n 0.75 
Rigid 2n 0.61 

TABLE 2. Experimental conditions for the five runs which are to be compared 
with the theory 

sets of experimental conditions for which most of the relevant quantities were 
measured, but some data will be presented from all the experiments described 
in table 2. Not all of the measurements in each experiment were made at the 
same time, but they were all under nominally the same conditions of bubbling 
and the rotation rates. In  all these cases the depth of the water was 30 em and 
the tube through which air was bubbled was placed lOcm below the surface. 
Some parts of the experiments were conducted in a 15 em diameter and some in 
a 22cm diameter cylinder, but no difference between these was detected. The 
geometry of the vortex seems to be governed entirely by that of the region of 
convection above it, and not at all by the presence of a container at  a distance of 
3 or 4 times the radius of the region of vertical motion. 

Vertical velocity ~ a s u r e m e n t s  

Profiles of vertical velocity can be measured easily only with a free surface, 
since otherwise averaging over too many particles is required. These profiles are 
not very precise because of the vertical oscillations still present and the small 
velocities produced by residual buoyancies of the tracer particles. In  figure 14 
are shown vertical velocities as a function of radius for experiment B measured 
over a small range of depths near the middle of the vortex. They are compared 
with the form (10) introduced in 0 3: the horizontal scale is fixed by the measured 
position of zero w, and the vertical scale has been adjusted to give the best fit. 
The agreement is fairly good, but it is clearly impossible with this limited 
accuracy to provide a critical test of the form of the vertical profile. In  particular, 
there were no particles near the centre in this experiment and the shape in this 
region has not yet been examined properly. 

Photographic measurements of this kind are certainly not good enough to 
define the rate of variation of w with height. This could only be measured. with 
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adequate accuracy in a few subsidiary experiments, by averaging over a large 
number of particles injeoted directly up the centre of the vortex from a hole in the 
bottom of the tank. These particles (about 30 for each point) were timed over a 
series of height intervals using a stop-watch, and the results for experiments V 
and VI are shown in figure 15. They are well fitted by straight lines, thus confirm- 
ing the result (7) imposed by the conditions for a strong vortex, and permitting 
the direct determination of w(0,O) and 1. These values, and the quantities 
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FIGURE 14. Relative measurements of vertical velocity compared with the form (10) 
(adjusted in both directions to give the best fit). The form of vertical velocity near the 
axis has not yet been measured. 

deduced from them in the manner summarized in 3 8, are shown in table 3. It is 
seen that E is indeed small, and N is close to the value suggested theoretically 
(certainly within the experimental error). Note that this is so even though all the 
parameters have varied simultaneously. Comparison of these two experiments 
illustrates the effect of changing the bubbling rate, with a constant geometry 
and rate of rotation. Increased ‘convection’ increases the vertical velocity near 
the top of the tank (and also the maximum tangential velocity, as we shall 
discuss later) but it decreases the vertical velocity near the bottom boundary. 
It also leads to a decrease in T,,, and most important, to a decrease in I ,  so that 
the net effect is to increase the radial velocity u,,. 

In  several other experiments, direct estimates of the maximum radial velocity 
could be made, and these were typically 0.1 cm/sec, leading to N in the range 
10-12. In  view of the errors involved in measuring such small velocities, these 
are not significantly different from the values based on vertical velocity. 

Tangential velocity profiles 

The tangential velocity profiles derived from the angular velocity measurements 
in all the experiments described in table 2 will be displayed in two ways. First, 
in figure 16, they have been plotted directly as tangential velocity against 
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radius, and then in figure 17 in non-dimensional form using the measured ro 
as the radial length scale and firo as the velocity scale. No variations of v with 
height could be detected in these measurements. 

1 2 3 4 5 6 7 
Vertical velocity (cm/sec) 

FIGURE 15. Measurements of vertical velocity as a function of height for runs V and VI, 
obtained by averaging over a large number of neutrally buoyant particles injected up 
the axis. 

Expt. w(0, 0) I U O  

no. (cm/sec) (cm) Z/ro (cm/sec) E N C 
V 2.6 10.6 14 0.09 0.08 7 7.8 
VI 1.9 5.5 9 0.11 0-06 7 5.7 

TABLE 3. Numerical values of the parameters arising in our theory, deduced from 
two experiments in which all the relevant measurements were made. 

The profiles in figure 16 are all remarkably similar near the origin, and the range 
of maximum velocities is small. The motion is being maintained, of course, by a 
bubbling region which is always nearly the same size and shape, and ro varies 
only within the range 0.58-0-75 cm, but the upper boundary condition and the 
rate of basic rotation have been varied. The main differences appear in the outer 
parts of the profiles, and the highest maxima are associated with tangential 
velocities which remain well above solid rotation to larger radii. This is made 
even clearer by the non-dimensional plot in figure 17. 
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In  all these profiles, the velocity maximum lies in the range 0-5-0.7r0. For 
the experiments conducted at the higher rotation rate, the central angular 
velocity and the magnitude of the tangential velocity maximum are consistent 
with those predicted theoretically using vertical profiles with ,8 about Q (see 
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F I G ~ E  16. Profiles of tangential velocity, deduced from the directly measured angular 
velocities as a function of radius for the experiments described in table 2. 
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17. The measured tangential velocity profiles of figure 16, made non- 
dimensional by scaling with r, and Rr,. 
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figure 1 l), and the value of C found in experiment VI is also in accord with this. 
The main result of using the lower rate of rotation seems to be to allow the 
region of downward motion to spread sideways to an extent which depends on 
the rate of bubbling, and thus draw on angular momentum from further off the 
axis. Experiment V is outside the range covered by the theoretical results, but 
the increase in magnitude of the maximum and in the value of C are consistent 
with a return to solid rotation at a larger r/ro,  i.e. an even smaller value of p. 

10. Conclusions 
The theoretical ideas developed here, which are strongly supported by the 

qualitative behaviour of our laboratory vortices, and to a lesser extent by the 
available quantitative results, have led to the following picture of a laminar 
vortex normal to a rotating solid plane. 

With ‘strong swirl’, in the sense defined above, the tangential and radial 
velocities are independent of height, and the vertical velocity varies linearly with 
height. The detailed structure of such a vortex is controlled by the nature of the 
boundary conditions imposed at the top and bottom. The important quantities 
which are determined by a region of ‘convection’ at the top are the radial length 
scale ro and also the ratio p* of the radii of the upflow (ro) and a compensating 
annular downflow. Once theform of the vertical flow at the top has been specified, 
the existence of the bottom boundary imposes a relation between the tangential 
motion and the vertical velocity just outside the bottom boundary layer. 
The radial Reynolds number N and the position of the tangential velocity maxi- 
mum v,,, relative to ro are very insensitive to the upper boundary condition 
(i.e. to p), while the magnitude of v,,, and the vertical velocity are calculable, 
but do depend more strongly on p. 

A second geometrical parameter, ro/Z, is left free in this theory. This is a ratio 
of horizontal to vertical length scales, the latter ( I )  being defined as the height 
over which the vertical velocity doubles from its value just above the bottom 
boundary layer. Thus although the vertical velocity near the bottom is fixed 
by the geometry of the driving region and the strength of the basic rotation, the 
magnitude of w higher up can depend separately on the vigour of the convection. 

There are of course many gaps in the arguments used, and the arbitrary nature 
of the imposed stream function is the least satisfactory feature of this analysis. 
A thorough understanding of the nature of the upper boundary condition, how 
it controls the horizontal extent of the vertical motion, and how it can impose 
a vertical velocity distribution which apparently remains nearly similar with 
height, must certainly be obtained before the problem can be solved completely. 
The extent to which our assumptions hold in the region beyond the tangential 
velocity maximum is also worthy of further study. The introduction of higher 
order terms should not change the structure near the centre, however, and since 
the local similarity argument is also a t  its best there, it would be surprising 
if any major changes could be produced in this way. A more detailed comparison 
of theory with experiments covering a wider range of parameters would clearly 
be useful in settling this point. 

Though these experiments and the associated theory have emphasized the 
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importance of the lower boundary to the proper understanding of a vortex 
above it, their direct relevance to tornadoes is still debatable; the boundary 
conditions, though more realistic than in some previous models, are still not 
exactly right. Our recent experimental effort has been concentrated on the 
problems of maintaining a steady vortex over a$xed plane, and of finding a 
method of driving from above which can impose a measure of external control 
on the vortex, while still retaining the self-regulating property -of the flows 
driven by convection. It would also be desirable to produce a vortex in which the 
circulation tends to a constant value a t  a large radius, rather than having solid 
rotation there. A separate point, taken for granted in discussing most models 
but deserving further thought, is the question of the usefulness of laminar models 
in general. The application of laboratory vortex models to the atmosphere has 
usually involved replacing molecular viscosity by a constant eddy viscosity 
determined by the state of the environment, but it seems more likely that the 
turbulence in the tornado is self-regulating, much as it is in a non-rotating 
turbulent jet . 

Thisis Contribution no. 1738 from the Woods Hole Oceanographic Institution, 
and has been supported in part by N.S.F. Grant no. GP 317 and ONR Contract 
no. 2196. I am grateful to my colleagues at Woods Hole, and to the many visitors, 
too numerous to mention individually, who have made helpful comments 
about my experiments and have criticized earlier versions of this manuscript. 
Mrs Jacqueline Webster was of great assistance in programming some of the 
calculations for machine computation. 
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FIGURE 1. Photograph of a vortex driven from above by convection produced by a 
stream of air bubbles. A dye crystal on the bottom shows the upward motion in the centre, 
and dye put in at the top marks an annular downflow. 
TURNER (Faci%g p. 400) 



Journal of Fluid Mechanics, Vol. 25, part 2 Plate 2 

FIGURE 2. Photograph of a vortex driven similarly to that in figure 1, but with deeper 
dye put in at  the top and left for a longer time. The dye, and the downward motion, is con- 
fined to a cylindrical region round the axis; on reaching the bottom, fluid flows rapidly 
inwards in a thin boiinda,ry layer and up the centre. 
TURNER 
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FIGURE 13. The method of velocity measurement. Time exposures of illuminated neutrally 
buoyant particles give spiral tracks whose dimensions are a measure of position and the 
three velocity components. This is an enlarged view of the central part of the tank just 
below the air bubbles. 
TURNER 


